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University of California, Berkeley
Physics H7C Fall 2002 (Strovink)

SOLUTION TO FINAL EXAMINATION

Problem 1.
(a)
The momentum p of the recoiling nucleus balances the momentum Eγ/c of the photon. By conser-
vation of energy,

(M +∆M)c2 = Erecoil + Eγ

=
√
p2c2 +M2c4 + Eγ

=
√
E2

γ +M2c4 + Eγ

(M +∆M)c2 − Eγ =
√
E2

γ +M2c4

(M2 + 2∆M +∆M2)c2 − 2(M +∆M)c2Eγ + E2
γ = E2

γ +M2c4

(2∆M +∆M2)c2 − 2(M +∆M)c2Eγ = 0

(2∆M +∆M2)c2 = 2(M +∆M)c2Eγ

∆Mc2
1 + ∆M

2M

1 + ∆M
M

= Eγ

∆Mc2
(
1− ∆M

2M
) ≈ Eγ .

The same result may be obtained even more easily by the method of successive approximations:
first approximate Eγ by ∆Mc2 and set p to Eγ/c; then approximate the kinetic energy K of the
(nonrelativistic) recoil nucleus as 1

2p
2/M = 1

2
∆M
M ∆Mc2; and finally, to conserve energy, correct Eγ

downward by K.
(b)
If the (A,Z)′ energy uncertainty ∆E were zero, the γ would be too weak by an energy of order
∆M
M ∆Mc2 to initiate the reverse reaction. For reabsorption to be able to proceed, ∆E must be at
least of that same order. Therefore, by the Uncertainty Principle,

τ ≈ h̄

∆E

≤≈ h̄M

(∆M)2c2
.

These equations underly the Mossbauer effect, which was used by Pound and Rebka to first measure
the gravitational redshift.

Problem 2.
(a)

(
cosα sinα
− sinα cosα

) (
1
0

)
=

(
cosα
sinα

)
.

The resulting light is plane polarized in the direction x̂ cosα − ŷ sinα, i.e. the direction of plane
polarization is rotated clockwise by the angle α.
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(b)
(

cosα sinα
− sinα cosα

) (
cosα
sinα

)
=

(
1
0

)
.

The resulting light is plane polarized in the x̂ direction, i.e. the direction of plane polarization again
is rotated clockwise by the angle α.
(c)

(
cosα sinα
− sinα cosα

) (
1
−i

)
=

(
cosα− i sinα
−i cosα− sinα

)
∝

(
1
−i

)
.

The resulting polarization is unchanged.
(d)

(
cosα sinα
− sinα cosα

) (
1
i

)
=

(
cosα+ i sinα
i cosα− sinα

)
∝

(
1
i

)
.

The resulting polarization is unchanged.
(e)
Light emerging from the vertical (ŷ) polarizer will be reduced in irradiance by a factor of two com-
pared to the unpolarized beam. (This is because Ey doesn’t interfere with Ex, so I = Ix + Iy; in
unpolarized light the two contributions to I are equal.) Thereafter the direction of plane polarization
is rotated by π/2 by the nematic cell, so the beam passes unattenuated through the horizontal (x̂)
polarizer. After reflection it is still horizontally polarized, so again it passes unattenuated through
the x̂ polarizer. Finally its polarization is rotated through −π/2 by the nematic cell, so that it also
passes unattenuated through the ŷ polarizer. Therefore the only attenuation occurs in the initial
traversal of the first polarizer:

Iemergent

Iincident
=

1
2
.

(To darken an LCD pixel, a voltage is applied to disrupt the operation of the nematic crystal.)

Problem 3.
In analogy to the optical coating, we consider a stepped potential:

V = 0, x < 0 : h̄2k2 = 2mE

V = V1, 0 < x < x1 : h̄2k2
1 = 2m(E − V1)

V = V0, x1 < x : h̄2k2
0 = 2m(E − V0) ,

where x1 is the width of the step, V1 is its height, and the k’s are parameters of the time-independent
Schroedinger equation solutions ∝ exp (ikx) in the three regions. In the optical problem, the phase
velocity of the wave is inversely proportional to n, the refractive index. In the Schroedinger problem,
the phase velocity is ω/k = E/(h̄k), also inversely proportional to k. So, in analogy to the optical
relation n1 =

√
n0n2, here we have

k2
1 = kk0

(E − V1) =
√
E(E − V0)

V1 = E −
√
E(E − V0) .
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In the step region 0 < x < x1, the Schroedinger wavelength is λ1 = 2π/k1. The step width x1 should
be one-quarter of this:

x1 =
λ1

4

=
2π
4k1

=
2πh̄

4
√
2m(E − V1)

=
πh̄√

8m
(
E − (E − √

E(E − V0))
)

=
πh̄√

8m
√
E(E − V0)

.

Problem 4.
(a)
Using L2Ylm = h̄2l(l+1)Ylm, and neglecting the term in E relative to the term in L2, the T.I.S.E. be-
comes

0 = − h̄2

2M
b(b− 1)rb−2 +

h̄2l(l + 1)
2M

rb−2

= −b(b− 1) + l(l + 1)

= b2 − b− l(l + 1)

b =
1± √

1 + 4l(l + 1)
2

=
1± (2l + 1)

2
= −l or l + 1 .

Only the second solution is physical, as only it vanishes at r = 0 as must occur when the angular
momentum is finite; also, the first solution is unnormalizably infinite at r = 0, even for the lowest
possible l = 1, due to the extra factor of r−1 in u. Hence

b = l + 1 .

(b)
Considering the properties of the Ylm’s, only the l = 0 eigenfunction is spherically (and therefore
cylindrically) symmetric. The (l > 0,m = 0) eigenfunctions are cylindrically symmetric, but for
m �= 0 the phase factor exp (imφ) violates cylindrical symmetry. Only the l = 0 probability density
u∗u is both spherically and cylindrically symmetric, while all the other probability densities are only
cylindrically symmetric.
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Problem 5.
(a)
There are four different spin-projection states (ms = − 3

2 ,− 1
2 ,+

1
2 ,+

3
2 ) at each harmonic oscillator

energy eigenvalue En = h̄ω0(n + 1
2 ); the Pauli principle allows each of these states to be occupied

by only one fermion. Therefore, as the energy level increases from n to n + 1, ∆N = 4 new states
become available. The change in energy required to go from level n to level n+ 1 is

∆E = h̄ω0(n+ 1 + 1
2 )− h̄ω0(n+ 1

2 ) = h̄ω0 .

Therefore
∆N
∆E

=
4

h̄ω0
.

(b)
Because of the factor of 4, 2N0 fermions may be accommodated in the lowest N0/2 energy states.
Therefore

nmax = N0/2
Emax ≡ EF = h̄ω0(nmax + 1

2 )
= 1

2 h̄ω0(N0 + 1) .

(c)
In general, at t = 0 the particle’s wavefunction is a sum over energy eigenstates:

ψ(x, t = 0) ≡ u(x) =
∞∑

n=0

Anun(x) ,

where An is a complex constant. At a later time t, each term in the sum will acquire a different
phase factor

exp (iφn) ≡ exp (−iEnt/h̄) .

The expectation value 〈x〉 of the particle’s position is

〈x〉 =
∞∑

m,n=0

∫ ∞

−∞
A∗

mu
∗
me

−iφmxAnune
iφn dx .

At t > 0, the terms in the integral differ from the terms at t = 0 by the phase factors exp i(φn − φm).
Only when φn−φm is always equal to a multiple of 2π will every term remain the same. The longest
time interval is required for the case |n−m| = 1, so that

|φn − φm| = (En − En−1)t
h̄

= ω0t = 2π

t =
2π
ω0

(the classical result) .
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Problem 6.
Balancing the satellite’s mass × centripetal acceleration with the gravitational force on it from the
star, we solve for its (nonrelativistic) velocity2 in circular orbit:

mv2

R
=

GMm

R2

v2 =
GM

R
.

Since the light pulse moves purely in the radial direction and the satellite moves purely in the tan-
gential direction, the satellite is neither approaching nor receding from the observer when the pulse
is emitted (and the problem says nothing about possible Hubble expansion of the star-observer dis-
tance). Therefore the only part of the relativistic Doppler shift that applies is the usual time dilation:
the observed frequency is

ωobs =
ω0

γ

= ω0

√
1− v2

c2

= ω0

√
1− GM

c2R

≈ ω0

(
1− GM

2c2R
)

∆ωD

ω
≈ − GM

2c2R
.

As for the gravitational redshift, relative to R = ∞, the photon gains extra energy GMmeff/R in the
attractive potential of the star. Here meff = E/c2 and E = h̄ω is the photon’s energy. It loses this
extra energy after climbing from radius R to the effectively infinite radius of the observer. Therefore

∆E = h̄∆ωG = −GMh̄ω

c2R
∆ωG

ω
= −GM

c2R
.

Finally, ordinary differential calculus relates ∆ω to ∆λ:

λ =
2πc
ω

dλ = −2πc
ω2

dω

= −λdω
ω

dλ

λ
= −dω

ω
∆λ
λ

≈ −∆ω
ω

.

Therefore
∆λG

∆λD
=

∆ωG

∆ωD
≈ GM/c2R

GM/2c2R
= 2 .


